أحمد قاسم أحمد رضا حسن
  • Ensemble diversified learning for image classification with noisy labels
  • In this work, we develop a new approach for learning a deep neural network for image classification with noisy labels using ensemble diversified learning. We first partition the training set into multiple subsets with diversified image characteristics. For each subset, we train a separate deep neural network image classifier. These networks are then used to encode the input image into different feature vectors, providing diversified observations of the input image. The encoded features are then fused together and further analyzed by a decision network to produce the final classification output. We study image classification on noisy labels with and without the access to clean samples. Our extensive experimental results on the CIFAR-10 and MNIST datasets demonstrate that our proposed method outperforms existing methods by a large margin.